- ортогональные полиномы
- orthogonal polynomials
Русско-английский словарь по радиоэлектронике. — Руссо. 2005.
Русско-английский словарь по радиоэлектронике. — Руссо. 2005.
ОРТОГОНАЛЬНЫЕ ПОЛИНОМЫ — системыполиномов , п =0, 1, ..., ортогональных с весом на интервале ( а, b): где квадрат нормы. Подобные системы возникают в разл. задачах матем. физики:в теории представлений групп, в вычислит. математике, при решении задачна собственные… … Физическая энциклопедия
Ортогональные многочлены — Пафнутий Львович Чебышёв В математике последовательностью ортогональных многочленов называют бесконечную последовательность действительных многочленов … Википедия
ОРТОГОНАЛЬНЫЕ МНОГОЧЛЕНЫ — система многочленов {Р n (х)}, удовлетворяющих условию ортогональности причем степень каждого многочлена Р n (х). равна его индексу п, а весовая функция (вес) на интервале ( а, b).или (в случае конечности a и b) на отрезке [a, b]. О. м. наз. о р… … Математическая энциклопедия
Полиномы Цернике — Графики значений в единичном круге. Полиномы Цернике последовательность многочленов, которые являются ортогональными на единичном круге. Названы в честь лауреата Нобелевской пре … Википедия
Полиномы — В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия
КЛАССИЧЕСКИЕ ОРТОГОНАЛЬНЫЕ МНОГОЧЛЕНЫ — общее название Якоби многочленов, Эрмита многочленов, Лагерра многочленов и Чебышева многочленов. Эти системы ортогональных многочленов обладают общими свойствами: 1) Весовая функция j(х)на интервале ортогональности ( а, b )удовлетворяет… … Математическая энциклопедия
Многочлены Якоби — Полиномы Якоби класс ортогональных полиномов. Названы в честь Карла Густава Якоба Якоби. Ортогональные полиномы Якоби Открыты Якоби, Карл Густав Якоб Формула … Википедия
СПЕЦИАЛЬНЫЕ ФУНКЦИИ — отдельные классы функций, возникающих вомногих теоретич. и прикладных задачах, обычно при решении дифференц. ур ний … Физическая энциклопедия
СФЕРИЧЕСКИЕ ФУНКЦИИ — (сферические гармоники) спец. функции, возникающие, напр., при отыскании ограниченных решений ур ния Лапласа Du = 0 в сферич. координатах (r, q, j) методом разделения переменных. Введены в кон. 18 в. А. Лежандром и П. Лапласом. Полагая и = и(r,q … Физическая энциклопедия
РЕГРЕССИОННЫЙ АНАЛИЗ — раздел матем. статистики, посвящённый методам анализа зависимости одной физ. величины Y от другой х. Пусть в точках х п независимой переменной x получены измерения Yn. Нужно найти зависимость ср. значения величины от величины х, т. е. , где a… … Физическая энциклопедия
ОСЦИЛЛЯТОР — (от лат. oscillo качаюсь), физическая система, совершающая колебания. Термином «О.» пользуются для любой системы, если описывающие её величины периодически меняются со временем. К л а с с и ч е с к и й О. механич. система, совершающая колебания… … Физическая энциклопедия